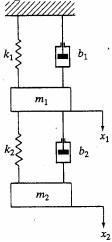
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING



ECEN 3723 Systems I Fall 2002 Midterm Exam #2

1)	; 2)	; 3)	; 4)	;
Name : _				
Student ID:				

Problem 1: Consider the mechanical system shown below. Using the force-current analogy to derive an analogous electrical circuit. Show the resulting circuit diagram.

Problem 2:

- a) Derive the formula for k^3 -muliplication, in a similar spirit as we did for k/k^2 -multiplication.
- b) Find X(z), the z-transform of $\sum_{i=0}^{k} ia^{i}$

Problem 3: Find x(k), the inverse z-transform of

a)
$$X(z) = \ln\left(\frac{2z-1}{2z}\right)$$
, and

b)
$$X(z) = \frac{1 - az^{-1}}{z^{-1} - a}$$
.

Problem 4: Given z transform of $k^5 3^k u(k)$ is X(z), find the y(k), such that

- a) Y(z) = X(2z)
- b) $Y(z) = \frac{d}{dz}X(z)$

Problem 5:

A linear, time-invariant discrete-time system is described by the impulse response function

$$h(k) = 3(\frac{1}{4})^k u(k-1) .$$

Find the output response y(k) with y(k) = 0, k < 0 for a given input function x(k) = 2u(k). Please note the z transform of the impulse response function of a linear, time-invariant system is its transfer function.